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Let Pn be the set of all algebraic polynomials of degree n or less. For
fE qa, b], the degree of approximation to f by polynomials in Pn is
Ein = inf{llf - p II:p E Pn}, where the norm is the uniform norm. Jackson's
theorem [1] states that there exists C > 0 such that En(f) ,,:;;; Cw(f; lin),
where w(f; 8) is the modulus of continuity off

f is said to be piecewise monotone if it has only a finite number of local
maxima and minima in [a, b]. The local maxima and minima in (a, b) are
called the peaks off Wolibner [5] has shown that for any E > 0 there exists
a polynomial, p, such that Ilf - p II < € and p is comonotone with f; i.e.,
p increases and decreases simultaneously withf Let En*(f) = inf{llf - p II:
pEPn , P comonotone with f}. Clearly En*(f) ?:- En(f). We seek an upper
bound on En*(f). For f monotone, Lorentz and Zeller [3] have shown that
there exists C1 > 0 such that En*(f) ,,:;;; C1w(f; lin). Newman, Passow, and
Raymon [4] have obtained results of a modified nature. They have shown
that there exists p E Pn satisfying Ilf - p II < C2w(f; lin), C2 an absolute
constant, such that f and pare comonotone except in certain neighborhoods
(whose diameters tend to zero with n) of the peaks. In this note we obtain
a comonotone approximation on the entire interval [a, b], but at a sacrifice
in the accuracy of approximation.

LEMMA 1. Let fE C(J+l)[a, b] and suppose that feu) = 0, u E (a, b). Let
g(x) = f[x, u], the divided difference of f, where we define f[u, u] = j'(u).
Then g E O[a, b] and II g(j) II ,,:;;; (j + 1)-lllf(J+l) II.
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Proof g(x) = ![x, u] = J~!'«x - u) t + u) dt, [2, p. 250]. Thus,

g'(x) = rtf"«x - u) t + u) dt,
v

1
g(j)(x) = f tif(i+1I«X - u) t + u) dt.

o

Therefore g E Ci[a, b] and II g(j) II ~ 11!(i+1) II J~ ti dt = (j + 1)-lllj<i+U II.

LEMMA 2. Let f be a piecewise monotone function, with peaks at
Xl' X2 ,..., Xk' and suppose thatfE C(i+k+1I[a, b]. Let

k [k ]-1
g(x) = t1 il (Xi - XI) !,[x, Xi],

I,.i

Then

(a) g E C(i+k-11[a, b];

Ilf (i+k+1) II k [k ]-1
(b) II g(i+k-11 1\ ~. L IT I Xi - XI I ;

(j + k) i=l 1=1
I,.i

Proof Since!, E C(i+kl[a, b], by Lemma 1, !,[X, Xi] E C(i+k-U[a, b], so
that g E Cli+k-1)[a, b], proving (a).

Now

k [k ]-1
g(x) = t1 n(Xi - XI) !,[X, Xi]

1#

k [k J-1 1= L IT (Xi - XI) f f"«X - Xi) t + Xi) dt.
i=l 1=1 0

I,.i

Therefore,

k [k ]-1 1g(i+k-11(x) = L IT (Xi - XI) J t(i+k - 11(i+k+1I«X - Xi) t + Xi) dt,
i=1 1=1 0

1#

and (b) follows from this.
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To prove (c), letg1(x) = !'[x, Xl] andgi+l(x) = gi[X, Xi+l]' i = 1,2,..., k-l.
Then gi+l(x) = !'[x, Xl"'" XH1], i = 1, 2,..., k - 1, [2, p. 248]. Hence,

k [k ]-1
gk(X) = !'[x, Xl"'" Xk] = L IT (Xi - XI) !'[x, Xi]

i-I I-I
l,oi

(1)

the last expression being equal to g(x) [2, p. 255]. By Lemma 1,
gl E CCi+k-1l[a, b] and II gii+k-1l II ~ (j + k)-111j<i+k+1l II, g2 E CCi+k-2l[a, b]
and II g~i+k-2l II ~ (j + k - I)-I II gii+k-1l 11, ..., gk E Ora, b] and II gJil II ~
(j + I)-I II gL~ll II'

Thus

[

k ] 1 .,
/I gU) II = II g~) II ~ n(j + I) - II/i+k+l) II = (j~' k)! II IU+k+l) II,

and the proof of the lemma is complete.

THEOREM 1. Let f be a piecewise monotone function with peaks at
Xl' X2 ,..., Xk' and suppose that fE CIi+k+1)[a, b]. Then there exists di such
that, for n > 2(k +j),

* d;(b - a)k+1 II I Ci+k+ll II
En (f) ~ ni •

Proof. Define g as in Lemma 2, and note from (1) that

!'(X)
g(x) = il~ (x - x) ,

0-1 i

since!'(xi) = 0 for i = 1,2,..., k. Thus g maintains a constant sign on [a, b],
which, we may assume, is nonnegative. Therefore, there exists q E Pn-k-1

such that q(x) ~ 0 on [a, b] and II g - q II ~ 2En - k-1(g). Hence,

I j'(x) Iilk ( _ -) - q(x) ~ 2En- k - 1(g),
i-I X X o

so that

I!'(x) - q(x) n(x - Xi) I~ 2(b - a)k En- k-1(g)·
0-1

Thus

II (X) - I(a) - rq(t) n(t - Xi) dt I :::;; 2(b - a)k+1En- 1e-l(g).
a 0-1
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If we let
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f
re k

p(X) = f(a) + q(t) n(t - Xi) dt,
a i=l

then p E Pn , pis comonotone with/, and Ilf - p II ~ 2(b - a)k+1 En-k-1(g).
Since g E O[a, b] and II gU) II ~ IIfU+k+1) II, there exists aj such that

aj II flHk+1) II
En-k-1(g) ~ (n - k)(n - k - 1) .. , (n - k - j + 1)

for n > (k + j), [1],

Thus

2ai 11 fU+k+l) 1\
~ .

nJ
for n > 2(k + j).

4aib - a)k+1llpHk+l) II dib - a)k+11IfU+k+l) II
Ilf-pil ~ . = .nJ nJ

for n > 2(k + j).

THEOREM 2. Let f satisfy the hypotheses of Theorem 1. Then there exists
rj.k such that,for n > 4(k + j + 2),

* (b - a)k+l rj,k Ilf(Hk+l) II
En (j) ~ ni+k-l '

where ri.k depends on Xl' Xz , ... , Xk and j.

The proof of Theorem 2 is identical to that of Theorem 1, but makes use
of parts (a) and (b) of Lemma 2 in the same way that Theorem 1 uses part (c)
of that lemma.

Notice that the order of comonotone approximation in Theorem 2 is
smaller than that in Theorem 1. On the other hand, the constant rj,k in
Theorem 2 depends upon the location of the peaks of/, while the constant dj

in Theorem 1 is independent of/, n, and k.
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